Fractal and Chaos Characteristics of Acoustic Emission During Failure of Cemented Filling Body

نویسندگان

  • B. W. Hu
  • C. H. Li
  • Z. C. Li
چکیده

The cemented filling body is taken as the object of this study, whose nonlinear dynamic characteristics of damage and instability are researched by virtue of acoustic emission (AE) under uniaxial cyclic loading and unloading test. The results show that there exists similarity in variation trend between correlation dimension and maximum Lyapunov exponent during each loading stage, which also verifies the disorder and chaos often reflect the complexity of fractal. Before the filling body gets to the instability, the correlation dimension declines continuously. So the filling body’s unstable failure is a kind of ordered dimension reduction process. Such kind of characteristic can be as a criterion condition for filling body’s failure. The maximum Lyapunov exponent varies little in magnitude, therefore, it can’t be apt to be used as the criterion condition, but it can be used to predict the AE time series that is of chaos feature, and through it higher forecast precision can be got.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster Analysis of Acoustic Emission Signals for Carbon/Epoxy Composite in Four-point Bending Test (RESEARCH NOTE)

Due to the extensive use of composites in various industries and the fact that defects reduce ultimate strength and efficiency during operation, detection of failures in composite parts is very important. The aim of this paper is to use Acoustic Emission (AE) non-destructive method in four-point bending test of carbon/epoxy composite to analyze and examine the failure mechanisms. This method is...

متن کامل

Damage Energy Evaluation in [55/-55]9 Composite Pipes using Acoustic Emission Method

In this study, the longitudinal and hoop tensile strengths of an industrial ±55° Glass Reinforced Epoxy (GRE) pipe with eighteen layers as well as the associated failure mechanisms are determined. To obtain the longitudinal and hoop tensile strengths values, three specimens are cut from the studied GRE pipe in each direction. A comparison is done between both the strength values, and the fractu...

متن کامل

On the Use of Acoustic Emission and Digital Image Correlation for Welded Joints Damage Characterization

A series of tests have been conducted to investigate fatigue damage characterization in corroded welded steel plates using structural health monitoring (SHM) techniques. Acoustic Emission (AE) is a non-destructive testing (NDT) technique with potential applications for locating and monitoring fatigue cracks in service. In the present work, AE is implemented to characterize damage during crack e...

متن کامل

Flexural monitoring of carbon fiber/epoxy composite by acoustic emission

Carbon / epoxy composite is one of the most useful polymer matrix composites that has special properties such as high strength-to-weight ratio, high hardness, high corrosion resistance, Resistance to nuclear radiation has high consumption in different industries such as aerospace industry. Therefor monitoring of loading of this type of composite is important. In order to determine failure mecha...

متن کامل

Chaotic Analysis and Prediction of River Flows

Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014